3.327 \(\int \frac {1}{(d \sec (e+f x))^{5/2} (b \tan (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=130 \[ -\frac {12 (b \tan (e+f x))^{3/2}}{5 b^3 f (d \sec (e+f x))^{5/2}}-\frac {24 E\left (\left .\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {b \tan (e+f x)}}{5 b^2 d^2 f \sqrt {\sin (e+f x)} \sqrt {d \sec (e+f x)}}-\frac {2}{b f \sqrt {b \tan (e+f x)} (d \sec (e+f x))^{5/2}} \]

[Out]

-2/b/f/(d*sec(f*x+e))^(5/2)/(b*tan(f*x+e))^(1/2)+24/5*(sin(1/2*e+1/4*Pi+1/2*f*x)^2)^(1/2)/sin(1/2*e+1/4*Pi+1/2
*f*x)*EllipticE(cos(1/2*e+1/4*Pi+1/2*f*x),2^(1/2))*(b*tan(f*x+e))^(1/2)/b^2/d^2/f/(d*sec(f*x+e))^(1/2)/sin(f*x
+e)^(1/2)-12/5*(b*tan(f*x+e))^(3/2)/b^3/f/(d*sec(f*x+e))^(5/2)

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 130, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2609, 2612, 2616, 2640, 2639} \[ -\frac {24 E\left (\left .\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {b \tan (e+f x)}}{5 b^2 d^2 f \sqrt {\sin (e+f x)} \sqrt {d \sec (e+f x)}}-\frac {12 (b \tan (e+f x))^{3/2}}{5 b^3 f (d \sec (e+f x))^{5/2}}-\frac {2}{b f \sqrt {b \tan (e+f x)} (d \sec (e+f x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/((d*Sec[e + f*x])^(5/2)*(b*Tan[e + f*x])^(3/2)),x]

[Out]

-2/(b*f*(d*Sec[e + f*x])^(5/2)*Sqrt[b*Tan[e + f*x]]) - (24*EllipticE[(e - Pi/2 + f*x)/2, 2]*Sqrt[b*Tan[e + f*x
]])/(5*b^2*d^2*f*Sqrt[d*Sec[e + f*x]]*Sqrt[Sin[e + f*x]]) - (12*(b*Tan[e + f*x])^(3/2))/(5*b^3*f*(d*Sec[e + f*
x])^(5/2))

Rule 2609

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*Sec[e +
f*x])^m*(b*Tan[e + f*x])^(n + 1))/(b*f*(n + 1)), x] - Dist[(m + n + 1)/(b^2*(n + 1)), Int[(a*Sec[e + f*x])^m*(
b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && LtQ[n, -1] && IntegersQ[2*m, 2*n]

Rule 2612

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((a*Sec[e +
f*x])^m*(b*Tan[e + f*x])^(n + 1))/(b*f*m), x] + Dist[(m + n + 1)/(a^2*m), Int[(a*Sec[e + f*x])^(m + 2)*(b*Tan[
e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && (LtQ[m, -1] || (EqQ[m, -1] && EqQ[n, -2^(-1)])) && Integer
sQ[2*m, 2*n]

Rule 2616

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(a^(m + n)*(b
*Tan[e + f*x])^n)/((a*Sec[e + f*x])^n*(b*Sin[e + f*x])^n), Int[(b*Sin[e + f*x])^n/Cos[e + f*x]^(m + n), x], x]
 /; FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[n + 1/2] && IntegerQ[m + 1/2]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rubi steps

\begin {align*} \int \frac {1}{(d \sec (e+f x))^{5/2} (b \tan (e+f x))^{3/2}} \, dx &=-\frac {2}{b f (d \sec (e+f x))^{5/2} \sqrt {b \tan (e+f x)}}-\frac {6 \int \frac {\sqrt {b \tan (e+f x)}}{(d \sec (e+f x))^{5/2}} \, dx}{b^2}\\ &=-\frac {2}{b f (d \sec (e+f x))^{5/2} \sqrt {b \tan (e+f x)}}-\frac {12 (b \tan (e+f x))^{3/2}}{5 b^3 f (d \sec (e+f x))^{5/2}}-\frac {12 \int \frac {\sqrt {b \tan (e+f x)}}{\sqrt {d \sec (e+f x)}} \, dx}{5 b^2 d^2}\\ &=-\frac {2}{b f (d \sec (e+f x))^{5/2} \sqrt {b \tan (e+f x)}}-\frac {12 (b \tan (e+f x))^{3/2}}{5 b^3 f (d \sec (e+f x))^{5/2}}-\frac {\left (12 \sqrt {b \tan (e+f x)}\right ) \int \sqrt {b \sin (e+f x)} \, dx}{5 b^2 d^2 \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}}\\ &=-\frac {2}{b f (d \sec (e+f x))^{5/2} \sqrt {b \tan (e+f x)}}-\frac {12 (b \tan (e+f x))^{3/2}}{5 b^3 f (d \sec (e+f x))^{5/2}}-\frac {\left (12 \sqrt {b \tan (e+f x)}\right ) \int \sqrt {\sin (e+f x)} \, dx}{5 b^2 d^2 \sqrt {d \sec (e+f x)} \sqrt {\sin (e+f x)}}\\ &=-\frac {2}{b f (d \sec (e+f x))^{5/2} \sqrt {b \tan (e+f x)}}-\frac {24 E\left (\left .\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )\right |2\right ) \sqrt {b \tan (e+f x)}}{5 b^2 d^2 f \sqrt {d \sec (e+f x)} \sqrt {\sin (e+f x)}}-\frac {12 (b \tan (e+f x))^{3/2}}{5 b^3 f (d \sec (e+f x))^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.66, size = 81, normalized size = 0.62 \[ \frac {24 \sqrt [4]{-\tan ^2(e+f x)} \, _2F_1\left (-\frac {1}{4},\frac {1}{4};\frac {3}{4};\sec ^2(e+f x)\right )+\cos (2 (e+f x))-11}{5 b d^2 f \sqrt {b \tan (e+f x)} \sqrt {d \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((d*Sec[e + f*x])^(5/2)*(b*Tan[e + f*x])^(3/2)),x]

[Out]

(-11 + Cos[2*(e + f*x)] + 24*Hypergeometric2F1[-1/4, 1/4, 3/4, Sec[e + f*x]^2]*(-Tan[e + f*x]^2)^(1/4))/(5*b*d
^2*f*Sqrt[d*Sec[e + f*x]]*Sqrt[b*Tan[e + f*x]])

________________________________________________________________________________________

fricas [F]  time = 0.63, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {d \sec \left (f x + e\right )} \sqrt {b \tan \left (f x + e\right )}}{b^{2} d^{3} \sec \left (f x + e\right )^{3} \tan \left (f x + e\right )^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*sec(f*x+e))^(5/2)/(b*tan(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(d*sec(f*x + e))*sqrt(b*tan(f*x + e))/(b^2*d^3*sec(f*x + e)^3*tan(f*x + e)^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (d \sec \left (f x + e\right )\right )^{\frac {5}{2}} \left (b \tan \left (f x + e\right )\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*sec(f*x+e))^(5/2)/(b*tan(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate(1/((d*sec(f*x + e))^(5/2)*(b*tan(f*x + e))^(3/2)), x)

________________________________________________________________________________________

maple [C]  time = 0.64, size = 570, normalized size = 4.38 \[ \frac {\left (-12 \cos \left (f x +e \right ) \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticF \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right ) \sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}+24 \cos \left (f x +e \right ) \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticE \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right ) \sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}+\left (\cos ^{3}\left (f x +e \right )\right ) \sqrt {2}-12 \sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticF \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right )+24 \sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticE \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right )+6 \cos \left (f x +e \right ) \sqrt {2}-12 \sqrt {2}\right ) \sin \left (f x +e \right ) \sqrt {2}}{5 f \left (\frac {d}{\cos \left (f x +e \right )}\right )^{\frac {5}{2}} \left (\frac {b \sin \left (f x +e \right )}{\cos \left (f x +e \right )}\right )^{\frac {3}{2}} \cos \left (f x +e \right )^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(d*sec(f*x+e))^(5/2)/(b*tan(f*x+e))^(3/2),x)

[Out]

1/5/f*(-12*cos(f*x+e)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))
^(1/2)*EllipticF(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(
1/2)+24*cos(f*x+e)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))^(1
/2)*EllipticE(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/2
)+cos(f*x+e)^3*2^(1/2)-12*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)
*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))^(1/2)*EllipticF(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*
2^(1/2))+24*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+
e)-I-sin(f*x+e))/sin(f*x+e))^(1/2)*EllipticE(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))+6*cos
(f*x+e)*2^(1/2)-12*2^(1/2))*sin(f*x+e)/(d/cos(f*x+e))^(5/2)/(b*sin(f*x+e)/cos(f*x+e))^(3/2)/cos(f*x+e)^4*2^(1/
2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (d \sec \left (f x + e\right )\right )^{\frac {5}{2}} \left (b \tan \left (f x + e\right )\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*sec(f*x+e))^(5/2)/(b*tan(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((d*sec(f*x + e))^(5/2)*(b*tan(f*x + e))^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\left (b\,\mathrm {tan}\left (e+f\,x\right )\right )}^{3/2}\,{\left (\frac {d}{\cos \left (e+f\,x\right )}\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((b*tan(e + f*x))^(3/2)*(d/cos(e + f*x))^(5/2)),x)

[Out]

int(1/((b*tan(e + f*x))^(3/2)*(d/cos(e + f*x))^(5/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*sec(f*x+e))**(5/2)/(b*tan(f*x+e))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________